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                      Introduction to Computer Graphics 
( C S 6 0 2 )  
  Lecture 18 

3D Transformations II 
 

b) Rotation 
 Rotation is the process of moving a point in space in a non-linear manner. 
More particularly, it involves moving the point from one position on a sphere 
whose center is at the origin to another position on the sphere. Why would you 
want to do something like this? As we will show in later section, allowing the point 
of view to move around is only an illusion – projection requires that the POV be 
at the origin. When the user thinks the POV is moving, you are actually 
translating all your points in the opposite direction; and when the user thinks the 
POV is looking down a new vector, you are actually rotating all the points in the 
opposite direction; and when the user thinks the POV is looking down a new 
vector, you are actually rotating all the points in the opposite direction.  
 
Normalization: Note that this process of moving your points so that your POV is 
at the origin looking down the +Z axis is called normalization. 
 
Rotation a point requires that you know  

1) the coordinates for the point, and  
2) That you know the rotation angles.  
 

You need to know three different angles: how far to rotate around the X axis( YZ 
rotation, or “pitch”); how far to rotate around the Y axis (XZ plane, or “yaw”); and 
how far to rotate around the Z axis (XY rotation, or “roll”). Conceptually, you do 
the three rotations separately. First, you rotate around one axis, followed by 
another, then the last. The order of rotations is important when you cascade 
rotations; we will rotate first around the Z axis, then around the X axis, and finally 
around the Y axis. 
 
To show how the rotation formulas are derived, let’s rotate the point <x,y,z> 
around the Z axis with an angle of θ degrees.  
ROLL:- 
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If you look closely, you should note that when we rotate around the Z axis, the Z 
element of the point does not change. In fact, we can just ignore the Z – we 
already know what it will be after the rotation. If we ignore the Z element, then we 
have the same case as if we were rotating the two-dimensional point <x,y> 
through the angle θ. 
This is the way to rotate a 2-D point. For simplicity, consider the pivot at origin 
and rotate point P (x,y) where x = r cosФ and y = r sinФ 
If rotated by θ then: 
x′  = r cos(Ф + θ) 
 = r cosФ cosθ – r sinФ sinθ 
and 
y′  = r sin(Ф + θ) 
 = r cosФ sinθ + r sinФ cosθ 
 

 
 
Replacing r cosФ with x and r sinФ with y, we have:  
x′ = x cosθ – y sinθ 
and 
y′ = x sinθ + y cosθ 
and  
z′ = z (as it does not change when rotating around z-axis) 
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Now for rotation around other axes, cyclic permutation 
helps form the equations for yaw and pitch as well: 
 
In the above equations replacing x with y and y with z 
gives equations for rotation around x-axis. Now in the 
modified equations if we replace y with z and z with x 
then we get the equations for rotation around y-axis. 
 

 
 
 
Rotation about x-axis (i.e. in yz plane): 
x′  = x 
y′  = y cosθ – z sinθ 
z′  = y sinθ + z cosθ 
 
Rotation about y-axis (i.e. in xz plane): 
x′  = z sinθ +  x cosθ 
y ′  = y 
z′  = z cosθ – x sinθ 
 
 
 

X Y

Z
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Using Matrices to create 3D 
 A matrix is usually defined as a two-dimensional array of numbers. 
However, I think you will find it much more useful to think of a matrix as an array 
of vectors. When we talk about vectors, what it really mean is an ordered set of 
numbers ( a tuple in mathematics terms). We can use 3D graphics vectors and 
points interchangeably for this, since they are both 3-tuples ( or triples). 
 
In general we work with “square” matrices. This means that the number of 
vectors in the matrix is the same as the number of elements in the vectors that 
comprise it. Mathematically, we show a matrix as a 2-D array of numbers 
surrounded by vertical lines. For example: 
 
|x1 y1 z1| 
|x2 y2 z2| 
|x3 y3 z3| 
 
we designate this as a 3*3 matrix ( the first 3 is the number of rows, and the 
second 3 is the number of columns).  
The “rows” of the matrix are the horizontal vectors that make it up; in this case, 
<x1, y1,z1>, <x2,y2,z2>, and <x3,y3,z3>. In mathematics, we call the vertical 
vectors “columns.” In this case they are < x1,x2,x3>, <y1,y2,y3> and <z1,z2,z3>. 
The most important thing we do with a matrix is to multiply it by a vector or 
another matrix. We follow one simple rule when multiplying something by a 
matrix: multiply each column by a multiplicand and store this as an element in the 
result. Now as I said earlier, you can consider each column to be a vector, so 
when we multiply by a matrix, we are just doing a bunch of vector multiplies. So 
which vector multiply do you use-the dot product, or the crosss product? You use 
the dot product.  
We also follow on simple rule when multiplying a matrix by something: mubliply 
each ro by the multiplier. Again, rows are just vectors, and the type of ultiplicaiton 
is the dot product. 
Let’s look at some examples. First, let’s assume that I have a matrix M, and I 
want to multiply it by a point < x,y,z>, the first ting I know is that the vector rows 
of the matrix must contain three elements (in other words, three columns). Why ? 
because I have to multiply those rows by my point using a dot product, and to do 
that, the two vectors must have the same number of element. Since I am going to 
get dot product for each row in M, I will end up with a tuple that has one element 
for each row in M. as I stated earlier, we work almost exclusively with square 
matrices, since I must have three columns, M will also have three rows. Lets see: 

     | 1 0 0| 
< x,y,z> * |0 1 0| ={ <x,y,z>*< 1,0,0> ,<x,y,z> <0,1,0>,<x,y,z> *<0,0,1> } = { x,y,z} 
       |0 0 1|  
 
 
 
Using Matrices for Rotation 
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Roll (rotate about the Z axis): 
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Pitch (rotate about the X axis): 
 
 
 
 
 
 
 
Yaw (rotate about the Y axis): 
 
 
 
 
 
 
 
 

 
 

Example: 

To show this happening, let's manually rotate the point <2,0,0> 45 degrees 
clockwise about the z axis. 




































−

=



















1

.

1000
0cossin0
0sincos0
0001

1
'
'
'

z
y
x

z
y
x

θθ
θθ





































−
=



















1

.

1000
0cos0sin
0010
0sin0cos

1
'
'
'

z
y
x

z
y
x

θθ

θθ



 Computer Graphics (CS602) 

 
© Copyright Virtual University of Pakistan 

201

 

Now you can take an object and apply a sequence of transformations to it to 
make it do whatever you want. All you need to do is figure out the sequence of 
transformations needed and then apply the sequence to each of the points in the 
model. 

As an example, let's say you want to rotate an object sitting at a certain point p 
around its z axis. You would perform the following sequence of transformations 
to achieve this: 

 

The first transformation moves a point such that it is situated about the world 
origin instead of being situated about the point p. The next one rotates it 
(remember, you can only rotate about the origin, not arbitrary points in space). 
Finally, after the point is rotated, you want to move it back so that it is situated 
about p. The final translation accomplishes this. 

 

Rotation w.r.t. Arbitrary Axis: 

If an object is required to be rotated with respect to a line acting as an axis of 
rotation, arbitrarily, then the problem is addressed using multiple transformations. 
Let us assume that such an arbitrary axis is parallel to one of the coordinate 
axes, say x-axis. 
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The first step in such case would be to translate the object such that the arbitrary 
axis coincides with the x-axis. 
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The next step would be to rotate the object w.r.t. x-axis through angle θ.  

 

Then the object is translated such that the arbitrary axis gets back to its original 
position. 
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And thus the job is done. 

An interesting usage of compound transformations:- 
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Now, if the arbitrary axis is not parallel to any of the coordinate axes, then the 
problem is slightly more difficult. It only adds to the number of steps required to 
get the job done.  Let P1, P2 be the line arbitrary axis. 
 

 
 
In the first step, the translation takes place that coincides the point P1 to the 
origin. Points after this step are P1’ and P2’. 
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Now the arbitrary axis is rotated such that the point P2’ rotates to become P2’’ 
and lies on the z-axis. 
 

 
 
 
 
 

 
 
In the next step the object of interest is rotated around z-axis. 
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Now the object of interest is rotated about origin such that the arbitrary axis is 
poised like in above figure. Point P2’’ gets back to its previous position P2’. 
 

 
 
Finally the translation takes place to position the arbitrary axis back to its original 
position. 
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c) Scaling  
Coordinate transformations for scaling relative to the origin are 
 X` = X . Sx 
 Y` = Y. Sy 
 Z` =  Z. Sz 
Scaling an object with transformation changes the size of the object and 
reposition the object relative to the coordinate origin. If the transformation 
parameters are not all equal, relative dimensions in the object are changed.  
 
Uniform Scaling : We preserve the original shape of an object with a uniform 
scaling ( Sx = Sy = Sz) 
 
Differential Scaling : We do not preserve the original shape of an object with a 
differential scaling ( Sx <> Sy <> Sz) 
 
 
 
 
Scaling relative to the coordinate Origin: 
 
 Scaling transformation of a position P = (x, y, z) relative to the coordinate 
origin can be written as 
 
 
 
 
 
 
 
 
Scaling with respect to a selected fixed position: 
 
Scaling with respect to a selected fixed position (Xf,Yf,Zf) can be represented with 
the following transformation sequence: 
 

1. Translate the fixed point to the origin. 
2. Scale the object relative to the coordinate origin 
3. Translate the fixed point back to its original position 
 
For these three transformations we can have composite transformation matrix 
by multiplying three matrices into one 
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d) Reflection 
 A three-dimensional reflection can be performed relative to a selected 
reflection axis or with respect to a selected reflection plane. In general, three-
dimensional reflection matrices are set up similarly to those for two dimensions. 
Reflections relative to a given axis are equivalent to 180 degree rotations. 
 
The matrix representation for this reflection of points relative to the X axis 
 
 
 
 
 
 
 
 
The matrix representation for this reflection of points relative to the Y axis 
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The matrix representation for this reflection of points relative to the xy plane is  
 
 
 
 
 
 
 
 
 
 
 

e) Shears 
 Shearing transformations can be used to modify object shapes.  
As an example of three-dimensional shearing, the following transformation 
produces a  
z-axis shear: 
  
 
 
 
 
 
 
 
 
Parameters a and b can be assigned and real values. The effect of this 
transformation matrix is to alter x and y- coordinate values by an amount that is 
proportional to the z value, while leaving the z coordinate unchanged. 
  
y-axis Shear 
 
 
 
 
 
 
x-axis Shear 
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