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                  Introduction to Computer Graphics 
                  ( C S 6 0 2 )  

Lecture 17 
3D Transformations I 

17.1 Definition of a 3D Point 

A point is similar to its 2D counterpart; we simply add an extra component, Z, for 
the 3rd axis: 

 

Points are now represented with 3 numbers: <x, y, z>. This particular method of 
representing 3D space is the "left-handed" coordinate system. In the left-handed 
system the x axis increases going to the right, the y axis increases going up, and 
the z axis increases going into the page/screen. The right-handed system is the 
same but with the z-axis pointing in the opposite direction. 

17.2 Distance between Two 3D Points 

The distance between two points <Ax,Ay,Az> and <Bx,By,Bz> can be found by 
again using the Pythagoras theorem: 

dx = Ax-Bx  
dy = Ay-By  
dz = Az-Bz  
distance = sqrt(dx*dx + dy*dy + dz*dz) 

17.3 Definition of a 3D Vector 

Like it's 2D counterpart, a vector can be thought of in two ways: either a point at 
<x,y,z> or a line going from the origin <0,0,0> to the point <x,y,z>. 

3D Vector addition and subtraction is virtually identical to the 2D case. You can 
add a 3D vector <vx,vy,vz> to a 3D point <x,y,z> to get the new point <x',y',z'> 
like so: 
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x' = x + vx  
y' = y + vy  
z' = z + vz 
Vectors themselves can be added by adding each of their components, or they 
can be multiplied (scaled) by multiplying each component by some constant k 
(where k <> 0). Scaling a vector by 2 (say) will still cause the vector to point in 
the same direction, but it will now be twice as long. Of course you can also divide 
the vector by k (where k <> 0) to get a similar result. 

To calculate the length of a vector we simply calculate the distance between the 
origin and the point at <x, y, z>: 

Length = | <x,y,z> - <0,0,0> |  
       = sqrt( (x-0)*(x-0) + (y-0)*(y-0) + (z-0)*(z-0) )  
       = sqrt(x*x + y*y + z*z) 

17.4 Unit Vector 

Often in 3D computer graphics you need to convert a vector to a unit vector, ie a 
vector that points in the same direction but has a length of 1.  

This is done by simply dividing each component by the length: 

Let <x,y,z> be our vector, length = sqrt(x*x + y*y + z*z) 
Unit vector   =   <x,y,z>   =   |   x    ,    y    ,    z    | 
                  length        | length    length    length |  

(Where length = |<x,y,z>|) 

Note that if the vector is already a unit vector then the length will be 1, and the 
new values will be the same as the old. 

17.5 Definition of a Line 

As in 2D, we can represent a line by it's endpoints (P1 and P2) or by the 
parametric equation:  

P = P1 + k * (P2-P1) 
Where k is some scalar value between 0 and 1 

17.6 Transformations: 

 A static set of 3D points or other geometric shapes on screen is not very 
interesting. You could just use a paint program to produce one of these. To make 
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your program interesting, you will want a dynamic landscape on the screen. You 
want the points to move in the world coordinate system, and you even want the 
point-of-view (POV) to move. In short, you want to model the real world. The 
process of moving points in space is called transformation, and can be divided 
into translation, rotation and other kind of transformations. 
 
 

17.7 Translation 

 Translation is used to move a point, or a set of points, linearly in space, for 
example, you may want to move a point “3 meters east, -2 meters up, and 4 meters 
north.” Looking at this textual description, you might think that this looks very much like 
a Point3D, and you would be close. But the above does not require one critical piece of 
information: it does not reference the origin. The above only encapsulates direction and 
distance, not an absolute point in space. This called a vector and can be represented in a 
structure identical to Point3D: 
 
 struct Vector3D 
  float x;  distance along x axes 
  float y;  distance along y axes 
  float z;  distance along z axes 

end struct 
 

17.8 Vector Addition 

 You translate a point by adding a vector to it; you add points and vectors 
by adding the components piecewise: 
 
Point3D point = {0, 0, 0} 
Vector3D vector = {10, -3, 2.5 } 
 
Adding vector to point 
 
point.x = point.x + vector.x; 
point.y = point.y + vector.y; 
point.z = point.z + vector.z; 
 
Point will be now at the absolute point < 10,-3 2.5>. you could move it again: 
 
point.x = point.x + vector.x; 
point.y = point.y + vector.y; 
point.z = point.z + vector.z; 
 
And point would now be at the absolute point <20, -6, 5>.  
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In pure mathematical sense, you cannot add two points together – such an 
operation makes no sense (what is Lahore plus Karachi?). However, you can 
subtract a point from another in order to uncover the vector that would have to be 
added to the first to translate it into the second: 
 
 
Point3D p1,p2 
Vector3D v; 
 
Set p1 and p2 to the desired points 
v.x = p2.x – p1.x 
v.y = p2.y – p1.y 
v.z = p2.z – p1.z 
 
Now you can add v to p1, you would translate it into the point p2. 
 
The following lists the operations you can do between points and vectors: 
 
point – point  => vector 
point + point = point - ( - point) => vector 
vector – vector => vector 
vector + vector => vector 
point – vector = point + (-vector) => point 
point + vector => point 
 

17.9 Multiplying: Scalar Multiplication 

 
Multiplying a vector by a scalar ( a number with no units), and could be coded 
with:  
  
 Vector.x  =  Vector.x  * scalarValue 
 Vector.y  =  Vector.y  * scalarValue 
 Vector.z  =  Vector.z  * scalarValue 
 
If you had a vector with a length of 4 and multiplied it by 2.5, you would end up 
with a vector of length 10 that points in the same direction the original vector 
pointed.  If you multiplied by -2.5 instead, you would still end up with a vector of 
length 10; but now it would be pointing in the opposite direction of the original 
vector. 
 

17.10 Multiplying: Vector Multiplication 
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You can multiply with vectors two other ways; both involve multiplying a vector by 
a vector. 
 

17.11 Dot Product 

 
The dot product of two vectors is defined by the formula: 
Vector A, B  
 
 
 
A * B = A.x * B.x + A.y * B.y + A.z * B.z 
 
The result of a dot product is a number and has units of A’s units times B’s units. 
Thus, if you calculate the dot product for two vectors that both use feet for units, 
your answer will be in square feet. However, in 3D graphics we usually ignore the 
units and just treat it like a scalar. 
Consider the following definition of the dot product that is used by physicists 
(instead of mathematicians): 
 
A * B = |A| * |B| * cos(theta) 
 
Where theta is the angle between the two vectors 
 
Remember that |v| represents the length of vector V and is a non-negative 
number; we can replace the vector lengths above and end up with: 
 
K = |A| * |B| (therefore k > = 0) 
 
A * B = K * cos (theta) 
 
Therefore: 
 
A * B => cos(theta) 
 
Where “=>” means “directly correlates to.” Now, if you remember, the cos(theta) 
function has the following properties: 
 
cos(theta)  > 0 iff theta is less than 90 degrees or greater than 270 degrees 
cos(theta) < iff theta is greater than 90 degrees and less than 270 degrees 
cos(theta) = 0 iff theta is 90 degrees or 270 degrees 
 
We can extend this to the dot product of two vectors, since it directly correlates to 
the angle between the two vectors: 
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A*B  > 0 iff the angle between them is less than 90 or greater than 270 degrees 
A*B  < 0 iff the angle between them is greater than 90 and less than 270 degrees 
A*B  = 0 iff the angle between them is 90 or 270 degrees (they are orthogonal). 
 

17.12 Use of Dot Product 

 Assume you have a point of view at < px,py,pz>. It is looking along the 
vector <vx,vy,vz>, and you have a point in space <x,y,z> you want to know if the 
point–of-view can possible see the point, of if the point is “behind “ the POV, as 
shown in figure. 
 

 
 
Point3D pov; 
Vector3D povDir; 
Point3D test; 
Vector3D vTest 
float dotProduct; 
vTest.x = pov.x – test.x; 
vTest.y = pov.y – test.y; 
vTest.z = pov.z – test.z; 
 
dotProduct == vTest.x*povDir.x  + vTest.y*povDir.y + vTest.z * povDir.z; 
 
if(dotProduct > 0) 
 point is “in front of “ POV 
else if (dotProduct < 0) 

Direction of View 
<vx,vy,vz> 

Point of View 
<px,py,pz> 

Test vector 
<tx, ty, tz> 

Point 
<x, y, z> 
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 point is “behind” POV 
else 
 point is orthogonal to the POV direction 
 

17.13 Cross Product 

 Another kind of multiplication that you can do with vectors is called the 
cross product this is defined as: 
Vector A, B 
 
A X B = < A.y * B.z – A.z * B.y, A.z * B.x – A.x * B.z, A.x * B.y – A.y * B.x >  
 
For physicists: 
 
|A x B| = |A| * |B| sin(theta) 
 
Where theta is the angle between the two vectors. 
 
The above formula for A x B came from the determinate of order 3 of the matrix: 
 
|  X   Y   Z | 
|A.x A.y A.z| 
|B.x B.y B.z| 
 

17.14 Transformations 

The process of moving points in space is called transformation.   

17.15 Types of Transformation 

There are various types of transformations as we have seen in case of 2D 
transformations. These include: 

a) Translation 
b) Rotation 
c) Scaling 
d) Reflection 
e) Shearing 

 
a) Translation 

Translation is used to move a point, or a set of points, linearly in space. Since 
now we are talking about 3D, therefore each point has 3 coordinates i.e. x, y and 
z. similarly, the translation distances can also be specified in any of the 3 
dimensions. These Translation Distances are given by tx, ty and tz. 
For any point P(x,y,z) after translation we have P′(x′,y′,z′) where  
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x′ = x + tx ,    
y′ = y + ty ,  
z′ = z + tz  
and (tx, ty , tz) is Translation vector 

 
Now this can be expressed as a single matrix equation: 
    P′ = P + T 
 
Where:  

  
3D Translation Example 
We may want to move a point “3 meters east, -2 meters up, and 4 meters north.” 
What would be done in such event? 
Steps for Translation 
Given a point in 3D and a translation vector, it can be translated as follows: 
 

Point3D point = (0, 0, 0) 
Vector3D vector = (10, -3, 2.5) 

Adding vector to point 
point.x = point.x + vector.x; 
point.y = point.y + vector.y; 
point.z = point.z + vector.z; 

And finally we have translated point. 
 
 
 
 
Homogeneous Coordinates 
Analogous to their 2D Counterpart, the homogeneous coordinates for 3D 
translation can be expressed as : 
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Abbreviated as: 
   P’ = T (tx, ty, tz).  P 
On solving the RHS of the matrix equation, we get: 
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Which shows that each of the 3 coordinates gets translated by the corresponding 
translation distance. 


