
 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

195

 Introduction to Computer Graphics
(C S 6 0 2)
 Lecture 18

3D Transformations II

b) Rotation
 Rotation is the process of moving a point in space in a non-linear manner.
More particularly, it involves moving the point from one position on a sphere
whose center is at the origin to another position on the sphere. Why would you
want to do something like this? As we will show in later section, allowing the point
of view to move around is only an illusion – projection requires that the POV be
at the origin. When the user thinks the POV is moving, you are actually
translating all your points in the opposite direction; and when the user thinks the
POV is looking down a new vector, you are actually rotating all the points in the
opposite direction; and when the user thinks the POV is looking down a new
vector, you are actually rotating all the points in the opposite direction.

Normalization: Note that this process of moving your points so that your POV is
at the origin looking down the +Z axis is called normalization.

Rotation a point requires that you know

1) the coordinates for the point, and
2) That you know the rotation angles.

You need to know three different angles: how far to rotate around the X axis(YZ
rotation, or “pitch”); how far to rotate around the Y axis (XZ plane, or “yaw”); and
how far to rotate around the Z axis (XY rotation, or “roll”). Conceptually, you do
the three rotations separately. First, you rotate around one axis, followed by
another, then the last. The order of rotations is important when you cascade
rotations; we will rotate first around the Z axis, then around the X axis, and finally
around the Y axis.

To show how the rotation formulas are derived, let’s rotate the point <x,y,z>
around the Z axis with an angle of θ degrees.
ROLL:-

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

196

If you look closely, you should note that when we rotate around the Z axis, the Z
element of the point does not change. In fact, we can just ignore the Z – we
already know what it will be after the rotation. If we ignore the Z element, then we
have the same case as if we were rotating the two-dimensional point <x,y>
through the angle θ.
This is the way to rotate a 2-D point. For simplicity, consider the pivot at origin
and rotate point P (x,y) where x = r cosФ and y = r sinФ
If rotated by θ then:
x′ = r cos(Ф + θ)
 = r cosФ cosθ – r sinФ sinθ
and
y′ = r sin(Ф + θ)
 = r cosФ sinθ + r sinФ cosθ

Replacing r cosФ with x and r sinФ with y, we have:
x′ = x cosθ – y sinθ
and
y′ = x sinθ + y cosθ
and
z′ = z (as it does not change when rotating around z-axis)

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

197

Now for rotation around other axes, cyclic permutation
helps form the equations for yaw and pitch as well:

In the above equations replacing x with y and y with z
gives equations for rotation around x-axis. Now in the
modified equations if we replace y with z and z with x
then we get the equations for rotation around y-axis.

Rotation about x-axis (i.e. in yz plane):
x′ = x
y′ = y cosθ – z sinθ
z′ = y sinθ + z cosθ

Rotation about y-axis (i.e. in xz plane):
x′ = z sinθ + x cosθ
y ′ = y
z′ = z cosθ – x sinθ

X Y

Z

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

198

Using Matrices to create 3D
 A matrix is usually defined as a two-dimensional array of numbers.
However, I think you will find it much more useful to think of a matrix as an array
of vectors. When we talk about vectors, what it really mean is an ordered set of
numbers (a tuple in mathematics terms). We can use 3D graphics vectors and
points interchangeably for this, since they are both 3-tuples (or triples).

In general we work with “square” matrices. This means that the number of
vectors in the matrix is the same as the number of elements in the vectors that
comprise it. Mathematically, we show a matrix as a 2-D array of numbers
surrounded by vertical lines. For example:

|x1 y1 z1|
|x2 y2 z2|
|x3 y3 z3|

we designate this as a 3*3 matrix (the first 3 is the number of rows, and the
second 3 is the number of columns).
The “rows” of the matrix are the horizontal vectors that make it up; in this case,
<x1, y1,z1>, <x2,y2,z2>, and <x3,y3,z3>. In mathematics, we call the vertical
vectors “columns.” In this case they are < x1,x2,x3>, <y1,y2,y3> and <z1,z2,z3>.
The most important thing we do with a matrix is to multiply it by a vector or
another matrix. We follow one simple rule when multiplying something by a
matrix: multiply each column by a multiplicand and store this as an element in the
result. Now as I said earlier, you can consider each column to be a vector, so
when we multiply by a matrix, we are just doing a bunch of vector multiplies. So
which vector multiply do you use-the dot product, or the crosss product? You use
the dot product.
We also follow on simple rule when multiplying a matrix by something: mubliply
each ro by the multiplier. Again, rows are just vectors, and the type of ultiplicaiton
is the dot product.
Let’s look at some examples. First, let’s assume that I have a matrix M, and I
want to multiply it by a point < x,y,z>, the first ting I know is that the vector rows
of the matrix must contain three elements (in other words, three columns). Why ?
because I have to multiply those rows by my point using a dot product, and to do
that, the two vectors must have the same number of element. Since I am going to
get dot product for each row in M, I will end up with a tuple that has one element
for each row in M. as I stated earlier, we work almost exclusively with square
matrices, since I must have three columns, M will also have three rows. Lets see:

 | 1 0 0|
< x,y,z> * |0 1 0| ={ <x,y,z>*< 1,0,0> ,<x,y,z> <0,1,0>,<x,y,z> *<0,0,1> } = { x,y,z}
 |0 0 1|

Using Matrices for Rotation

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

199

Roll (rotate about the Z axis):



































 −

=



















1

.

1000
0100
00cossin
00sincos

1
'
'
'

z
y
x

z
y
x

θθ
θθ

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

200

Pitch (rotate about the X axis):

Yaw (rotate about the Y axis):

Example:

To show this happening, let's manually rotate the point <2,0,0> 45 degrees
clockwise about the z axis.




































−

=



















1

.

1000
0cossin0
0sincos0
0001

1
'
'
'

z
y
x

z
y
x

θθ
θθ





































−
=



















1

.

1000
0cos0sin
0010
0sin0cos

1
'
'
'

z
y
x

z
y
x

θθ

θθ

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

201

Now you can take an object and apply a sequence of transformations to it to
make it do whatever you want. All you need to do is figure out the sequence of
transformations needed and then apply the sequence to each of the points in the
model.

As an example, let's say you want to rotate an object sitting at a certain point p
around its z axis. You would perform the following sequence of transformations
to achieve this:

The first transformation moves a point such that it is situated about the world
origin instead of being situated about the point p. The next one rotates it
(remember, you can only rotate about the origin, not arbitrary points in space).
Finally, after the point is rotated, you want to move it back so that it is situated
about p. The final translation accomplishes this.

Rotation w.r.t. Arbitrary Axis:

If an object is required to be rotated with respect to a line acting as an axis of
rotation, arbitrarily, then the problem is addressed using multiple transformations.
Let us assume that such an arbitrary axis is parallel to one of the coordinate
axes, say x-axis.

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

202

The first step in such case would be to translate the object such that the arbitrary
axis coincides with the x-axis.

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

203

The next step would be to rotate the object w.r.t. x-axis through angle θ.

Then the object is translated such that the arbitrary axis gets back to its original
position.

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

204

And thus the job is done.

An interesting usage of compound transformations:-

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

205

Now, if the arbitrary axis is not parallel to any of the coordinate axes, then the
problem is slightly more difficult. It only adds to the number of steps required to
get the job done. Let P1, P2 be the line arbitrary axis.

In the first step, the translation takes place that coincides the point P1 to the
origin. Points after this step are P1’ and P2’.

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

206

Now the arbitrary axis is rotated such that the point P2’ rotates to become P2’’
and lies on the z-axis.

In the next step the object of interest is rotated around z-axis.

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

207

Now the object of interest is rotated about origin such that the arbitrary axis is
poised like in above figure. Point P2’’ gets back to its previous position P2’.

Finally the translation takes place to position the arbitrary axis back to its original
position.

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

208

c) Scaling
Coordinate transformations for scaling relative to the origin are
 X` = X . Sx
 Y` = Y. Sy
 Z` = Z. Sz
Scaling an object with transformation changes the size of the object and
reposition the object relative to the coordinate origin. If the transformation
parameters are not all equal, relative dimensions in the object are changed.

Uniform Scaling : We preserve the original shape of an object with a uniform
scaling (Sx = Sy = Sz)

Differential Scaling : We do not preserve the original shape of an object with a
differential scaling (Sx <> Sy <> Sz)

Scaling relative to the coordinate Origin:

 Scaling transformation of a position P = (x, y, z) relative to the coordinate
origin can be written as

Scaling with respect to a selected fixed position:

Scaling with respect to a selected fixed position (Xf,Yf,Zf) can be represented with
the following transformation sequence:

1. Translate the fixed point to the origin.
2. Scale the object relative to the coordinate origin
3. Translate the fixed point back to its original position

For these three transformations we can have composite transformation matrix
by multiplying three matrices into one



















1000
000
000
000

z

y

x

S
S

S



















−
−
−





































1000
100
010
001

.

1000
000
000
000

.

1000
100
010
001

f

f

f

z

y

x

f

f

f

Z
Y
X

S
S

S

Z
Y
X

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

209

d) Reflection
 A three-dimensional reflection can be performed relative to a selected
reflection axis or with respect to a selected reflection plane. In general, three-
dimensional reflection matrices are set up similarly to those for two dimensions.
Reflections relative to a given axis are equivalent to 180 degree rotations.

The matrix representation for this reflection of points relative to the X axis

The matrix representation for this reflection of points relative to the Y axis



















−
−
−

1000
)1(00
)1(00
)1(00

fzz

fyy

fxx

ZSS
YSS
XSS


















−

1000
0100
0010
0001

















−

1000
0100
0010
0001

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

210

The matrix representation for this reflection of points relative to the xy plane is

e) Shears
 Shearing transformations can be used to modify object shapes.
As an example of three-dimensional shearing, the following transformation
produces a
z-axis shear:

Parameters a and b can be assigned and real values. The effect of this
transformation matrix is to alter x and y- coordinate values by an amount that is
proportional to the z value, while leaving the z coordinate unchanged.

y-axis Shear

x-axis Shear



















−
1000
0100
0010
0001



















1000
0100
010
001

b
a



















1000
010
0010
001

c

a



















1000
010
001
0001

c
b

