
 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

186

 Introduction to Computer Graphics
 (C S 6 0 2)

Lecture 17
3D Transformations I

17.1 Definition of a 3D Point

A point is similar to its 2D counterpart; we simply add an extra component, Z, for
the 3rd axis:

Points are now represented with 3 numbers: <x, y, z>. This particular method of
representing 3D space is the "left-handed" coordinate system. In the left-handed
system the x axis increases going to the right, the y axis increases going up, and
the z axis increases going into the page/screen. The right-handed system is the
same but with the z-axis pointing in the opposite direction.

17.2 Distance between Two 3D Points

The distance between two points <Ax,Ay,Az> and <Bx,By,Bz> can be found by
again using the Pythagoras theorem:

dx = Ax-Bx
dy = Ay-By
dz = Az-Bz
distance = sqrt(dx*dx + dy*dy + dz*dz)

17.3 Definition of a 3D Vector

Like it's 2D counterpart, a vector can be thought of in two ways: either a point at
<x,y,z> or a line going from the origin <0,0,0> to the point <x,y,z>.

3D Vector addition and subtraction is virtually identical to the 2D case. You can
add a 3D vector <vx,vy,vz> to a 3D point <x,y,z> to get the new point <x',y',z'>
like so:

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

187

x' = x + vx
y' = y + vy
z' = z + vz
Vectors themselves can be added by adding each of their components, or they
can be multiplied (scaled) by multiplying each component by some constant k
(where k <> 0). Scaling a vector by 2 (say) will still cause the vector to point in
the same direction, but it will now be twice as long. Of course you can also divide
the vector by k (where k <> 0) to get a similar result.

To calculate the length of a vector we simply calculate the distance between the
origin and the point at <x, y, z>:

Length = | <x,y,z> - <0,0,0> |
 = sqrt((x-0)*(x-0) + (y-0)*(y-0) + (z-0)*(z-0))
 = sqrt(x*x + y*y + z*z)

17.4 Unit Vector

Often in 3D computer graphics you need to convert a vector to a unit vector, ie a
vector that points in the same direction but has a length of 1.

This is done by simply dividing each component by the length:

Let <x,y,z> be our vector, length = sqrt(x*x + y*y + z*z)
Unit vector = <x,y,z> = | x , y , z |
 length | length length length |

(Where length = |<x,y,z>|)

Note that if the vector is already a unit vector then the length will be 1, and the
new values will be the same as the old.

17.5 Definition of a Line

As in 2D, we can represent a line by it's endpoints (P1 and P2) or by the
parametric equation:

P = P1 + k * (P2-P1)
Where k is some scalar value between 0 and 1

17.6 Transformations:

 A static set of 3D points or other geometric shapes on screen is not very
interesting. You could just use a paint program to produce one of these. To make

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

188

your program interesting, you will want a dynamic landscape on the screen. You
want the points to move in the world coordinate system, and you even want the
point-of-view (POV) to move. In short, you want to model the real world. The
process of moving points in space is called transformation, and can be divided
into translation, rotation and other kind of transformations.

17.7 Translation

 Translation is used to move a point, or a set of points, linearly in space, for
example, you may want to move a point “3 meters east, -2 meters up, and 4 meters
north.” Looking at this textual description, you might think that this looks very much like
a Point3D, and you would be close. But the above does not require one critical piece of
information: it does not reference the origin. The above only encapsulates direction and
distance, not an absolute point in space. This called a vector and can be represented in a
structure identical to Point3D:

 struct Vector3D
 float x; distance along x axes
 float y; distance along y axes
 float z; distance along z axes

end struct

17.8 Vector Addition

 You translate a point by adding a vector to it; you add points and vectors
by adding the components piecewise:

Point3D point = {0, 0, 0}
Vector3D vector = {10, -3, 2.5 }

Adding vector to point

point.x = point.x + vector.x;
point.y = point.y + vector.y;
point.z = point.z + vector.z;

Point will be now at the absolute point < 10,-3 2.5>. you could move it again:

point.x = point.x + vector.x;
point.y = point.y + vector.y;
point.z = point.z + vector.z;

And point would now be at the absolute point <20, -6, 5>.

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

189

In pure mathematical sense, you cannot add two points together – such an
operation makes no sense (what is Lahore plus Karachi?). However, you can
subtract a point from another in order to uncover the vector that would have to be
added to the first to translate it into the second:

Point3D p1,p2
Vector3D v;

Set p1 and p2 to the desired points
v.x = p2.x – p1.x
v.y = p2.y – p1.y
v.z = p2.z – p1.z

Now you can add v to p1, you would translate it into the point p2.

The following lists the operations you can do between points and vectors:

point – point => vector
point + point = point - (- point) => vector
vector – vector => vector
vector + vector => vector
point – vector = point + (-vector) => point
point + vector => point

17.9 Multiplying: Scalar Multiplication

Multiplying a vector by a scalar (a number with no units), and could be coded
with:

 Vector.x = Vector.x * scalarValue
 Vector.y = Vector.y * scalarValue
 Vector.z = Vector.z * scalarValue

If you had a vector with a length of 4 and multiplied it by 2.5, you would end up
with a vector of length 10 that points in the same direction the original vector
pointed. If you multiplied by -2.5 instead, you would still end up with a vector of
length 10; but now it would be pointing in the opposite direction of the original
vector.

17.10 Multiplying: Vector Multiplication

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

190

You can multiply with vectors two other ways; both involve multiplying a vector by
a vector.

17.11 Dot Product

The dot product of two vectors is defined by the formula:
Vector A, B

A * B = A.x * B.x + A.y * B.y + A.z * B.z

The result of a dot product is a number and has units of A’s units times B’s units.
Thus, if you calculate the dot product for two vectors that both use feet for units,
your answer will be in square feet. However, in 3D graphics we usually ignore the
units and just treat it like a scalar.
Consider the following definition of the dot product that is used by physicists
(instead of mathematicians):

A * B = |A| * |B| * cos(theta)

Where theta is the angle between the two vectors

Remember that |v| represents the length of vector V and is a non-negative
number; we can replace the vector lengths above and end up with:

K = |A| * |B| (therefore k > = 0)

A * B = K * cos (theta)

Therefore:

A * B => cos(theta)

Where “=>” means “directly correlates to.” Now, if you remember, the cos(theta)
function has the following properties:

cos(theta) > 0 iff theta is less than 90 degrees or greater than 270 degrees
cos(theta) < iff theta is greater than 90 degrees and less than 270 degrees
cos(theta) = 0 iff theta is 90 degrees or 270 degrees

We can extend this to the dot product of two vectors, since it directly correlates to
the angle between the two vectors:

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

191

A*B > 0 iff the angle between them is less than 90 or greater than 270 degrees
A*B < 0 iff the angle between them is greater than 90 and less than 270 degrees
A*B = 0 iff the angle between them is 90 or 270 degrees (they are orthogonal).

17.12 Use of Dot Product

 Assume you have a point of view at < px,py,pz>. It is looking along the
vector <vx,vy,vz>, and you have a point in space <x,y,z> you want to know if the
point–of-view can possible see the point, of if the point is “behind “ the POV, as
shown in figure.

Point3D pov;
Vector3D povDir;
Point3D test;
Vector3D vTest
float dotProduct;
vTest.x = pov.x – test.x;
vTest.y = pov.y – test.y;
vTest.z = pov.z – test.z;

dotProduct == vTest.x*povDir.x + vTest.y*povDir.y + vTest.z * povDir.z;

if(dotProduct > 0)
 point is “in front of “ POV
else if (dotProduct < 0)

Direction of View
<vx,vy,vz>

Point of View
<px,py,pz>

Test vector
<tx, ty, tz>

Point
<x, y, z>

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

192

 point is “behind” POV
else
 point is orthogonal to the POV direction

17.13 Cross Product

 Another kind of multiplication that you can do with vectors is called the
cross product this is defined as:
Vector A, B

A X B = < A.y * B.z – A.z * B.y, A.z * B.x – A.x * B.z, A.x * B.y – A.y * B.x >

For physicists:

|A x B| = |A| * |B| sin(theta)

Where theta is the angle between the two vectors.

The above formula for A x B came from the determinate of order 3 of the matrix:

| X Y Z |
|A.x A.y A.z|
|B.x B.y B.z|

17.14 Transformations

The process of moving points in space is called transformation.

17.15 Types of Transformation

There are various types of transformations as we have seen in case of 2D
transformations. These include:

a) Translation
b) Rotation
c) Scaling
d) Reflection
e) Shearing

a) Translation

Translation is used to move a point, or a set of points, linearly in space. Since
now we are talking about 3D, therefore each point has 3 coordinates i.e. x, y and
z. similarly, the translation distances can also be specified in any of the 3
dimensions. These Translation Distances are given by tx, ty and tz.
For any point P(x,y,z) after translation we have P′(x′,y′,z′) where

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

193

x′ = x + tx ,
y′ = y + ty ,
z′ = z + tz
and (tx, ty , tz) is Translation vector

Now this can be expressed as a single matrix equation:
 P′ = P + T

Where:

3D Translation Example
We may want to move a point “3 meters east, -2 meters up, and 4 meters north.”
What would be done in such event?
Steps for Translation
Given a point in 3D and a translation vector, it can be translated as follows:

Point3D point = (0, 0, 0)
Vector3D vector = (10, -3, 2.5)

Adding vector to point
point.x = point.x + vector.x;
point.y = point.y + vector.y;
point.z = point.z + vector.z;

And finally we have translated point.

Homogeneous Coordinates
Analogous to their 2D Counterpart, the homogeneous coordinates for 3D
translation can be expressed as :

' 1 0 0
' 0 1 0

.
' 0 0 1

1 0 0 0 1 1

x

y

z

x t x
y t y
z t z

     
     
     =
     
     
     

Abbreviated as:
 P’ = T (tx, ty, tz). P
On solving the RHS of the matrix equation, we get:
















=

z
y
x

P















=

'
'
'

'
z
y
x

P















=

z

y

x

t
t
t

T

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

194

'
'
'

1 1

x

y

z

x x t
y y t
z z t

+   
   +   =
   +
   
   

Which shows that each of the 3 coordinates gets translated by the corresponding
translation distance.

