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Introduction to Computer Graphics 

                     ( C S 6 0 2 )  

                                            Lecture 14 

 Clipping-I 
 

14.1 Concept 

It is desirable to restrict the effect of graphics primitives to a sub-region of the canvas, to 
protect other portions of the canvas. All primitives are clipped to the boundaries of this 
clipping rectangle; that is, primitives lying outside the clip rectangle are not drawn.  

The default clipping rectangle is the full canvas (the screen), and it is obvious that we 
cannot see any graphics primitives outside the screen. 

A simple example of line clipping can illustrate this idea: 
 
This is a simple example of line clipping: the display window is the canvas and also the 
default clipping rectangle, thus all line segments inside the canvas are drawn. 
 
The red box is the clipping rectangle we will use later, and the dotted line is the 
extension of the four edges of the clipping rectangle. 
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a) Point Clipping 
Assuming a rectangular clip window, point clipping is easy. we save the point if: 
 

xmin <= x <=xmax  
ymin <= y <= ymax  

b) Line Clipping 

This section treats clipping of lines against rectangles. Although there are specialized 
algorithms for rectangle and polygon clipping, it is important to note that other graphic 
primitives can be clipped by repeated application of the line clipper.  

c) Clipping Individual Points 

Before we discuss clipping lines, let's look at the simpler problem of clipping individual 
points.  

If the x coordinate boundaries of the clipping rectangle are Xmin and Xmax, and the y 
coordinate boundaries are Ymin and Ymax, then the following inequalities must be 
satisfied for a point at (X, Y) to be inside the clipping rectangle:  

            Xmin < X < Xmax 
 
        and  
 
         Ymin < Y < Ymax 
       

If any of the four inequalities does not hold, the point is outside the clipping rectangle. 

Trivial Accept - save a line with both endpoints inside all clipping boundaries.  
Trivial Reject - discard a line with both endpoints outside the clipping boundaries.  
For all other lines - compute intersections of line with clipping boundaries.  
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Parametric representation of a line:  
 

x = x1 + u (x2 - x1)  
y = y1 + u (y2 - y1), and 0 <= u <= 1.  

If the value of u for an intersection with a clipping edge is outside the range 0 to 1, then 
the line does not enter the interior of the window at that boundary. If the value of u is 
within this range, then the line does enter the interior of the window at that boundary. 

14.2 Solve Simultaneous Equations  

To clip a line, we need to consider only its endpoints, not its infinitely many interior 
points. If both endpoints of a line lie inside the clip rectangle (eg AB, refer to the first 
example ), the entire line lies inside the clip rectangle and can be trivially accepted. If 
one endpoint lies inside and one outside(eg CD), the line intersects the clip rectangle 
and we must compute the intersection point. If both endpoints are outside the clip 
rectaangle, the line may or may not intersect with the clip rectangle (EF, GH, and IJ), 
and we need to perform further calculations to determine whether there are any 
intersections. 

The brute-force approach to clipping a line that cannot be trivially accepted is to 
intersect that line with each of the four clip-rectangle edges to see whether any 
intersection points lie on those edges; if so, the line cuts the clip rectangle and is 
partially inside. For each line and clip-rectangle edge, we therefore take the two 
mathematically infinite lines that contain them and intersect them. Next, we test whether 
this intersection point is "interior" -- that is, whether it lies within both the clip rectangle 
edge and the line; if so, there is an intersection with the clip rectangle. In the first 
example, intersection points G' and H' are interior, but I' and J' are not. 

14.3 The Cohen-Sutherland Line-Clipping Algorithm 

The more efficient Cohen-Sutherland Algorithm performs initial tests on a line to 
determine whether intersection calculations can be avoided.  

a) Steps for Cohen-Sutherland algorithm 

End-points pairs of the line are checked for trivial acceptance or trivial reject using 
outcode.  

If not trivial-acceptance or trivial-reject, the line is divided into two segments at a clip 
edge.  

Line is iteratively clipped by testing trivial-acceptance or trivial-rejected, and divided into 
two segments until completely inside or trivial-rejected.  
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b) Trivial acceptance/reject test 

To perform trivial accept and reject tests, we 
extend the edges of the clip rectangle to divide the 
plane of the clip rectangle into nine regions. Each 
region is assigned a 4-bit code determined by 
where the region lies with respect to the outside 
halfplanes of the clip-rectangle edges. Each bit in 
the outcode is set to either 1 (true) or 0 (false); the 
4 bits in the code correspond to the following 
conditions: 

 Bit 1: outside halfplane of top edge, above top edge Y > Ymax  
 Bit 2: outside halfplane of bottom edge, below bottom edge Y < Ymin  
 Bit 3: outside halfplane of right edge, to the right of right edge X > Xmax  
 Bit 4: outside halfplane of left edge, to the left of left edge X < Xmin  

Conclusion 

In summary, the Cohen-Sutherland algorithm is efficient when out-code testing can be 
done cheaply (for example, by doing bit-wise operations in assembly language) and 
trivial acceptance or rejection is applicable to the majority of line segments. (For 
example, large windows - everything is inside, or small windows - everything is outside). 

14.4 Liang-Barsky Algorithm 

Faster line clippers have been developed that are based on analysis of the parametric 
equation of a line segment, which we can write in the form: 
 
 x = x1 + u ∆x 
 y = y1 + u ∆y, where 0 <= u <= 1 
 
Where ∆x = x2 - x1 and ∆y = y2 - y1. Using these parametric equations, Cryus and Beck 
developed an algorithm that is generally more efficient than the Cohen-Sutherland 
algorithm. Later, Liang and Barsky independently devised an even faster parametric 
line-clipping algorithm. Following the Liang-Barsky approach, we first write the point-
clipping in a parametric way: 
  

xmin <= x1 + u ∆x <= xmax 
 ymin <= y1 + u ∆y <= ymax  
 
of these four inequalities can be expressed as 

 
u * pk <= qk, for k = 1, 2, 3, 4  

 
Where parameters p and q are defined as: 
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 p1 = -∆x, q1 = x1 - xmin 
 p2 = -∆x, q2 = xmax  - x1 
 p3 = -∆y, q3 = y1 - ymin 
 p4 = -∆y, q4 = ymax  - y1 
 
Any line that is parallel to one of the clipping boundaries has pk = 0 for the value of k 
corresponding to that boundary (k = 1, 2, 3, 4 correspond to the left, bottom, and top 
boundaries, respectively). If, for that value of k, we also find qk >= 0, the line is inside 
the parallel clipping boundary. 
 
When pk < 0, the infinite extension of the line proceeds from the outside to the inside of 
the infitite extension of the particular clipping boundary. If pk > 0, the line proceeds from 
the inside to the outside. For a nonzero value of pk = 0, we can calculate the value of u 
that corresponds to the point where the infinitely extended line intersects the extension 
of boundary k as: 
   

u = qk / pk  
 
For each line, we can calculate values for parameters u1 and u2 that defines that part of 
the line that lies within the clip rectangle. The value of u1 is determined by looking at the 
rectangle edges for which the line proceeds from the outer side to the inner side. (p < 0). 
For these edges we calculate rk = qk / pk. 
 
The value of u1 is taken as the largest of the set consisting of o and the various values 
of r. Conversely, the value of u2 is determined by examining the boundaries for which 
the line proceeds from inside to outside (p > o). A value of rk is calculated for each of 
these boundaries and the value of u2 is the minimum of the set consisting of 1 and the 
calculated r values. If u1 > u2, the line is completely outside the clip window and it can 
be rejected. Otherwise, the end points of the clipped line are calculated from the two 
values of parameter u. 
 
This algorithm is presented in the following procedure. Line intersection parameters are 
initialized to the values u1 = 0 and u2 = 1. For each clipping boundary, the appropriate 
values for p and q are calculated and used by the function clipTest to determine 
whether the line can be rejected or whether the intersection parameters are to be 
adjusted. 
 
When p < 0, the parameter r is used to update u1; when p < 0, the parameter r is used 
to update u2. 
 
If updating u1 or u2 results in u1 > u2, we reject the line. 
 
Otherwise, we update the appropriate u parameter only if the new value results in a 
shortening of the line. 
 



 Computer Graphics (CS602) 

 
© Copyright Virtual University of Pakistan 

156

When p = 0 and q < 0, we can discard the line since it is parallel to and outside of this 
boundary.  
 
If the line has not been rejected after all four values of p and q have been tested, the 
endpoints of the clipped line are determined from values of u1 and u2. 
 
Conclusion 
 
In general, the Liang-Barsky algorithm is more efficient than the Cohen Sutherland 
algorithm, since intersection calculations are reduced. Each update of parameters u1 
and u2 requires only one division; and window intersections of the line are computed 
only once, when the final values of u1 and u2 have computed. In contrast, the Cohen-
Sutherland algorithm can repeatedly calculate intersections along a line path, even 
though the line may be completely outside the clip window, and, each intersection 
calculation requires both a division and a multiplication. Both the Cohen Sutherland and 
the Liang Barsky algorithms can be extended to three-dimensional clipping. 


