
 Computer Graphics (CS602) 
 

 
© Copyright Virtual University of Pakistan 

40

Introduction to Computer Graphics 
 ( C S 6 0 2 )  
Lecture No 04 

Point 
 

 
 

4.1 Pixel 
The smallest dot illuminated that can be seen on screen. 
 
4.2 Picture 
Composition of pixels makes picture that forms on whole screen 
 
4.3 Resolution 
We know that Graphics images on the screen are built up from tiny dots called 
picture elements or pixels. The display resolution is defined by the number of 
rows from top to bottom, and number of pixels from left to right on each scan line. 
 
 Since each mode uses a particular resolution. For example mode 19 uses a 

resolution of 200 scan lines, each containing 320 pixels across. This is often 
referred to as 320*200 resolution. 

 In general, higher the resolution, more pleasing is the picture. Higher 
resolution means a sharper, clearer picture, with less pronounced ‘staircase’ 
effect on lines drawn diagonally and better looking text characters. On the 
other hand, higher resolution also means more memory requirement for the 
display. 

 
4.4 Text and Graphics Modes 
We discussed different video hardware devices that include VGA cards and 
monitors. Video cards are responsible to send picture data to monitor each time it 
refresh itself. Video cards support both different text and graphics modes. Modes 
consist of their own refresh rate, number of colors and resolutions (number of 
rows multiply by number of columns). The following famous video modes that we 
can set in today’s VGA cards on different refresh rate: 
 

 25 * 80 with 16 colors support (text mode) 
 320 * 200 with 8 bit colors support (graphics mode) 
 640 * 480 with 16 colors support (graphics mode) 
 640 * 480 with 8, 16, 24, 32 bit color support (graphics mode) 
 800 * 600 with 8, 16, 24, 32 bit color support (graphics mode) 

 



 Computer Graphics (CS602) 
 

 
© Copyright Virtual University of Pakistan 

41

4.5 Text and Graphics 
All modes are fundamentally of two types, text or graphics. Some modes display 
only text and some are made only for graphics. As seen earlier, the display 
adapter continuously dumps the contents of the VDU (video display unit) memory 
on the screen. 
 
The amount of memory required representing a character on screen in text mode 
and a pixel in graphics mode varies from mode to mode. 
 
Mode No. Type Resolution Memory Required 

3 Text 80 x 25 2 bytes per char 
6 Graphics 640 x 200 1 bit per pixel 
7 Text 80 x 25 2 bytes per char 
18 Graphics 640 x 480 1 bit per pixel 
19 Graphics 320 x 200 1 byte per pixel 

 
In mode 6 each pixel displayed on the screen occupies one bit in VDU memory. 
Since this bit can take only two values, either 0 or 1, only two colors can be used 
with each pixel. 
 
4.6 How text displays 
As seen previously text modes need two bytes in VDU memory to represent one 
character on screen; of these two bytes, the first byte contains the ASCII value of 
the character being displayed, whereas the second byte is the attribute byte. The 
attribute byte controls the color in which the character is being displayed. 
 
The ASCII value present in VDU memory must be translated into a character and 
drawn on the screen. This drawing is done by a character generator this is part of 
the display adapter or in VBIOS. The CGA has a character generator that uses 8 
scan lines and 8 pixels in each of these scan lines to produce a character on 
screen; whereas the MA’s character generator uses 9 scan lines and 14 pixels in 
each of these scan lines to produce a character. This larger format of MA makes 
the characters generated by MA much sharper and hence easier to read. 
 
On older display adapters like MA and CGA, the character generator is located in 
ROM (Read Only Memory). EGA and VGA do not have a character generator 
ROM. Instead, character generator data is loaded into plane 2 of display RAM. 
This feature makes it easy for custom character set to be loaded. Multiple 
character sets (up to 4 for EGA and up to 8 for VGA) may reside in RAM 
simultaneously. 
 
A set of BIOS services is available for easy loading of character sets. Each 
character set can contain 256 characters. Either one or two character sets may 
be active giving these adapters on the screen simultaneously. When two 
character sets are active, a bit in each character attribute byte selects which 



 Computer Graphics (CS602) 
 

 
© Copyright Virtual University of Pakistan 

42

character set will be used for that character. 
 
Using a ROM-BIOS service we can select the active character set. Each 
character in the standard character set provided with the EGA is 8 pixels wide 
and 14 pixels tall. Since VGA has higher resolution, it provides a 9 pixel wide by 
16 pixels tall character set. Custom character set can also be loaded using BIOS 
VDU services. 
 
The graphics modes can also display characters, but they are produced quite 
differently. The graphics modes can only store information bit by bit. The big 
advantage of this method is that you design characters of desired style, shape 
and size. 
 
4.7 Text mode colors 
In mode 3, for each character on screen there are two bytes in VDU memory, 
one containing the ACCII value of the character and other containg its attribute. 
The attribute byte controls the color of the character. The attribute byte contains 
three components: he foreground color (color of the character itself), the 
background color (color of the area not covered by the character ) and the 
blinking component of the character. The next slide shows the breakup of the 
attribute byte. 

 
 

Bits 
7  6 5  4 3 2 1 Purpose 
X x x x x x x 1 Blue component of foreground color 
X x x x x x 1 x  Green component of foreground color 
X x x x x 1 x x Red component of foreground color 
X x x x 1 x x x Intensity component of foreground color 
X x x 1 x x x x Blue component of background color 
X x 1 x x x x x Green component of background color 
X 1 x x x x x x  Red component of background color 
1 x x x x x x x  Blinking component 
 
4.8 Graphics Mode colors 
So far we have seen how to set color in text modes. Setting color in graphics 
modes is quite different. In the graphics mode each pixel on the screen has a 
color associated with it. There are important differences here as compared to 
setting color in text mode. First, the pixels cannot blink. Second, each pixel is a 
discrete dot of color, there is no foreground and background. Each pixel is simply 
one color or another. The number of colors that each adapter can support and 
the way each adapter generates these colors is drastically different. But we will 
only discuss here colors in VGA. 
 
 



 Computer Graphics (CS602) 
 

 
© Copyright Virtual University of Pakistan 

43

4.9 Colors in VGA 
IBM first introduced the VGA card in April 1987. VGA has 4 color planes – red, 
green, blue and intensity, with one bit from each of these planes contributing 
towards 1 pixel value. 
 
There are lots of ways that you can write pixel on screen. You can write pixel on 
screen by using one of the following methods: 
 

 Using video bios services to write pixel 
 Accessing memory and registers directly to write pixel on screen. 
 Using library functions to write pixel on screen 

 
4.10 Practical approach to write pixel on screen 
As we have discussed three ways to write pixel on screen. Here we will discuss 
all these ways practically and see how the pixel is displayed on screen. For that 
we will have to write code in Assembly and C languages. So Get ready with 
these languages 
 
4.11 Writing pixel Using Video BIOS 
The following steps are involved to write pixel using video BIOS services. 

 Setting desired video mode 
 Using bios service to set color of a screen pixel 
 Calling bios interrupt to execute the process of writing pixel. 

 
 

Source code 
Below are the three lines written in assembly language that can set graphics 
mode 19(13h). You can use this for assembler or you can embed this code in C 
language using ‘asm’ keyword 

 
   MOV AH,0 
   MOV AL,13h ;;mode number from 0-19 
   INT 10H 

 
To insert in C language above code will be inserted with key word asm and curly braces. 

asm{ 
   MOV AH,0 
   MOV AL,13h ;;mode number from 0-19 
   INT 10H 

  } 
 
Description 

 Line #1: mov ah,0   is the service number for setting video mode 
that is in register ah 

 Line #2: mov al,13h  is the mode number that is in register al 



 Computer Graphics (CS602) 
 

 
© Copyright Virtual University of Pakistan 

44

 Line #3: int 10h   is the video bios interrupt number that will set 
mode 13h 

 
Source code for writing pixel 
The following code can be used to write pixel using video bios interrupt 10h and 
service number 0ch. 
 

MOV AH,0Ch 
MOV AL,COLOR_NUM 
MOV BH,0 
MOV CX,ROW_NUM 
MOV DX,COLUMN_NUM 
INT 10h 

 
Description 

 Line#1: service number in register aH 
 Line#2: color value, since it is 13h mode so it has 0-255 colors range. You 

can assign any color number between 0 to 255 to al register. Color will be 
selected from default palette setting against the number you have used. 

 Line#3: page number in bH register. This mode supports only one page. 
So 0 is used in bH register. 0 mean default page. 

 Line#4: column number will be used in CX register 
 Line#5: row number will be used in DX register 
 Line#6: BIOS interrupt number 10h 

 
4.12 Writing pixel by accessing memory directly 
So far we used BIOS to draw pixel. Here we will draw pixel by accessing direct 
pointer to the video memory and write color value. The following steps are 
involved to write direct pixel without using BIOS: 
 

 Set video mode by using video BIOS routine as discussed earlier 
 Set any pointer to the video graphics memory address 0x0A0000. 
 Now write any color value in the video memory addressing 

 
 

Direct Graphics Memory Access Code 
 

Mov ax,0a000h 
Mov ds,ax  ;;segment address changed 
Mov si,10  ;; column number 
Mov [si],COLOR_NUM 
 

• Work to do: 
– Write pixel at 12th row and 15th column 

• Hint: use formula (row * 320 + column) in si register. 



 Computer Graphics (CS602) 
 

 
© Copyright Virtual University of Pakistan 

45

 
 
 

4.13 Writing character directly on screen 
You can also write direct text by setting any text mode using BIOS service and 
then setting direct pointer at text memory address 0x0b8000. 
 
Example 
Set mode Number 3. using BIOS service and then use this code to write 
character 
 

Mov ax,0b8000h 
Mov ds,ax 
Mov si,10   ;;column number 
Mov [si],’a’   ;;character to write 

 
4.14 Using Library functions 
While working in C language, you can use graphics library functions to write pixel 
on screen. These graphics library functions then use BIOS routines or use direct 
memory access drivers to draw pixel on screen. 
 
initgraph(&gdriver, &gmode, "");  
/* read result of initialization */ 
errorcode = graphresult();  
if (errorcode != grOk) 
/* an error occurred */ 
 {                                                                   
 printf("Graphics error: %s\n", getch()); exit(1);              
 /* return with error code */                        
  } 
/* draw a pixel on 10th row and 10 column */ 
putpixel(10, 10, BLUE); 
/* clean up */ 
closegraph(); 
 
4.15 Steps in C language 

 First call Initgraph() function 
 and then call putpixel() function to draw pixel on screen. It takes row, 

column and color value as parameters. 
 after drawing pixel use closegraph() function to close the graphics routines 

provided by built in driver by Borland. 
 
 
 



 Computer Graphics (CS602) 
 

 
© Copyright Virtual University of Pakistan 

46

4.16 Discussion on pixel drawing methods 
BIOS routines are standard routines built in VGA cards but these routines are 
very much slow. You will use pixel to draw filled triangle, rectangles and circles 
and these all will be much slower than direct memory access method. Direct 
memory access method allows you to write pixel directly by passing the complex 
BIOS routines. It is easy and faster but its programming is only convenient in 
mode 13h. Library functions are easier to use and even faster because these are 
optimized and provided with special drivers by different companies. 
 
4.17 Drawing pixel in Microsoft Windows 
So far we have been discussing writing pixel in DOS. Here we will discuss briefly 
how to write pixel in Microsoft Windows. Microsoft windows is complete graphical 
operating system but it does not allow you to access BIOS or direct memory 
easily. It provides library functions (APIs) that can be used to write graphics. 
By working in graphics in windows one must have knowledge about Windows 
GDI (graphics device interface) system. 
 
4.18 Windows GDI functions 
Here are some windows GDI functions that can be used to draw pixel e.g 
SetPixel and SetPixelV. Both are used to draw pixel on screen. The example and 
source code of writing pixel in windows will be available. 
 
 
Window Code Example: 
 

// a.cpp : Defines the entry point for the application. 
// 
 
#include "stdafx.h" 
#include "resource.h" 
 
#define MAX_LOADSTRING 100 
 
// Global Variables: 
HINSTANCE hInst;        // 
current instance 
TCHAR szTitle[MAX_LOADSTRING];      
  // The title bar text 
TCHAR szWindowClass[MAX_LOADSTRING];     
   // The title bar text 
 
// Foward declarations of functions included in this code 
module: 
ATOM    MyRegisterClass(HINSTANCE 
hInstance); 
BOOL    InitInstance(HINSTANCE, int); 



 Computer Graphics (CS602) 
 

 
© Copyright Virtual University of Pakistan 

47

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); 
LRESULT CALLBACK About(HWND, UINT, WPARAM, LPARAM); 
 
int APIENTRY WinMain(HINSTANCE hInstance, 
                     HINSTANCE hPrevInstance, 
                     LPSTR     lpCmdLine, 
                     int       nCmdShow) 
{ 
  // TODO: Place code here. 
 MSG msg; 
 HACCEL hAccelTable; 
 
 // Initialize global strings 
 LoadString(hInstance, IDS_APP_TITLE, szTitle, 
MAX_LOADSTRING); 
 LoadString(hInstance, IDC_A, szWindowClass, 
MAX_LOADSTRING); 
 MyRegisterClass(hInstance); 
 
 // Perform application initialization: 
 if (!InitInstance (hInstance, nCmdShow))  
 { 
  return FALSE; 
 } 
 
 hAccelTable = LoadAccelerators(hInstance, 
(LPCTSTR)IDC_A); 
 
 // Main message loop: 
 while (GetMessage(&msg, NULL, 0, 0))  
 { 
  if (!TranslateAccelerator(msg.hwnd, hAccelTable, 
&msg))  
  { 
   TranslateMessage(&msg); 
   DispatchMessage(&msg); 
  } 
 } 
 
 return msg.wParam; 
} 
 
 
 
// 
//  FUNCTION: MyRegisterClass() 
// 



 Computer Graphics (CS602) 
 

 
© Copyright Virtual University of Pakistan 

48

//  PURPOSE: Registers the window class. 
// 
//  COMMENTS: 
// 
//    This function and its usage is only necessary if 
you want this code 
//    to be compatible with Win32 systems prior to the 
'RegisterClassEx' 
//    function that was added to Windows 95. It is 
important to call this function 
//    so that the application will get 'well formed' 
small icons associated 
//    with it. 
// 
ATOM MyRegisterClass(HINSTANCE hInstance) 
{ 
 WNDCLASSEX wcex; 
 
 wcex.cbSize = sizeof(WNDCLASSEX);  
 
 wcex.style   = CS_HREDRAW | CS_VREDRAW; 
 wcex.lpfnWndProc = (WNDPROC)WndProc; 
 wcex.cbClsExtra  = 0; 
 wcex.cbWndExtra  = 0; 
 wcex.hInstance  = hInstance; 
 wcex.hIcon   = LoadIcon(hInstance, 
(LPCTSTR)IDI_A); 
 wcex.hCursor  = LoadCursor(NULL, IDC_ARROW); 
 wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW+1); 
 wcex.lpszMenuName = (LPCSTR)IDC_A; 
 wcex.lpszClassName = szWindowClass; 
 wcex.hIconSm  = LoadIcon(wcex.hInstance, 
(LPCTSTR)IDI_SMALL); 
 
 return RegisterClassEx(&wcex); 
} 
 
// 
//   FUNCTION: InitInstance(HANDLE, int) 
// 
//   PURPOSE: Saves instance handle and creates main 
window 
// 
//   COMMENTS: 
// 
//        In this function, we save the instance handle 
in a global variable and 



 Computer Graphics (CS602) 
 

 
© Copyright Virtual University of Pakistan 

49

//        create and display the main program window. 
// 
BOOL InitInstance(HINSTANCE hInstance, int nCmdShow) 
{ 
   HWND hWnd; 
 
   hInst = hInstance; // Store instance handle in our 
global variable 
 
   hWnd = CreateWindow(szWindowClass, szTitle, 
WS_OVERLAPPEDWINDOW, 
      CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL, NULL, 
hInstance, NULL); 
 
   if (!hWnd) 
   { 
      return FALSE; 
   } 
 
   ShowWindow(hWnd, nCmdShow); 
   UpdateWindow(hWnd); 
 
   return TRUE; 
} 
 
// 
//  FUNCTION: WndProc(HWND, unsigned, WORD, LONG) 
// 
//  PURPOSE:  Processes messages for the main window. 
// 
//  WM_COMMAND - process the application menu 
//  WM_PAINT - Paint the main window 
//  WM_DESTROY - post a quit message and return 
// 
// 
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM 
wParam, LPARAM lParam) 
{ 
 int wmId, wmEvent; 
 PAINTSTRUCT ps; 
 HDC hdc; 
 TCHAR szHello[MAX_LOADSTRING]; 
 LoadString(hInst, IDS_HELLO, szHello, MAX_LOADSTRING); 
 
 switch (message)  
 { 
  case WM_COMMAND: 



 Computer Graphics (CS602) 
 

 
© Copyright Virtual University of Pakistan 

50

   wmId    = LOWORD(wParam);  
   wmEvent = HIWORD(wParam);  
   // Parse the menu selections: 
   switch (wmId) 
   { 
    case IDM_ABOUT: 
       DialogBox(hInst, 
(LPCTSTR)IDD_ABOUTBOX, hWnd, (DLGPROC)About); 
       break; 
    case IDM_EXIT: 
       DestroyWindow(hWnd); 
       break; 
    default: 
       return DefWindowProc(hWnd, message, 
wParam, lParam); 
   } 
   break; 
  case WM_PAINT: 
   { 
   hdc = BeginPaint(hWnd, &ps); 
   // TODO: Add any drawing code here... 
   RECT rt; 
   GetClientRect(hWnd, &rt); 
   int j=0; 
   //To draw some pixels of RED colour on the 
screen 
   for(int i=0;i<100;i++) 
   { 
    SetPixel(hdc,i+j,10,RGB(255,0,0)); 
    j+=6; 
   } 
 
   EndPaint(hWnd, &ps); 
   } 
   break; 
  case WM_DESTROY: 
   PostQuitMessage(0); 
   break; 
  default: 
   return DefWindowProc(hWnd, message, wParam, 
lParam); 
   } 
   return 0; 
} 
 
// Mesage handler for about box. 
LRESULT CALLBACK About(HWND hDlg, UINT message, WPARAM 



 Computer Graphics (CS602) 
 

 
© Copyright Virtual University of Pakistan 

51

wParam, LPARAM lParam) 
{ 
 switch (message) 
 { 
  case WM_INITDIALOG: 
    return TRUE; 
 
  case WM_COMMAND: 
   if (LOWORD(wParam) == IDOK || LOWORD(wParam) 
== IDCANCEL)  
   { 
    EndDialog(hDlg, LOWORD(wParam)); 
    return TRUE; 
   } 
   break; 
 } 
    return FALSE; 
} 


