Computer Graphics (CS602)

Introduction to Computer Graphics

(Lecture No 09)

Filled-Area Primitives-11

9.1 Boundary fill

Another important class of area-filling algorithms starts at a point known to be
inside a figure and starts filling in the figure outward from the point. Using these
algorithms a graphic artist may sketch the outline of a figure and then select a
color or pattern with which to fill it. The actual filling process begins when a point
inside the figure is selected. These routines are like the paint-scan function seen
in common interactive paint packages.

The first such method that we will discuss is called the boundary-fill algorithm.
The boundary-fill method requires the coordinates of a starting point, a fill color,
and a boundary color as arguments.

Boundary fill algorithm:
The Boundary fill algorithm performs the following steps:

= Check the pixel for boundary color
= Check the pixel for fill color
= Set the pixel in fill color

= Run the process for neighbors

The pseudo code for Boundary fill algorithm can be written as:

boundaryfFill (x, v, fillColor , boundaryColor)

if (x <0) || (x >= width))

return
if ((y < 0) || (y >= height))

return
current = GetPixel(x, y)
if ((current != boundaryColor) && (current != fillColor))
setPixel(fillColor, x, y)
boundaryFill (x+1, v, fillColor, boundaryColor)
boundaryFill (x, y+1, fillColor, boundaryColor)
boundaryFill (x-1, vy, fillColor, boundaryColor)
boundaryFill (x, y-1, fillColor, boundaryColor)

105

© Copyright Virtual University of Pakistan

Computer Graphics (CS602)

Note that this is a recursive routine. Each invocation of boundaryFill () may call
itself four more times.

The logic of this routine is very simple. If we are not either on a boundary or
already filled we first fill our point, and then tell our neighbors to fill themselves.

]
+
+'!
]

j

‘L
W
1
‘El

mr
llir

i
[l
[
i
i
I
[
i
i
i

2000009 2000000
2090000002
-;'9-._-;:;‘ b4

i-‘-i

Process of Boundary Fill Algorithm

By the way, sometimes the boundary fill algorithm doesn't work. Can you think of
such a case?

9.2Flood Fill

Sometimes we need an area fill algorithm that replaces all connected pixels of a
selected color with a fill color.

The flood-fill algorithm does exactly that.
Flood-fill algorithm

An area fill algorithm that replaces all connected pixels of a selected color with a
fill color.

106

© Copyright Virtual University of Pakistan

Computer Graphics (CS602)

Before Applying Flood-fill algorithm (Light color)

After Applying Flood-fill algorithm (Dark color)
Flood-fill algorithm in action

The pseudo code for Flood fill algorithm can be written as:
public void floodFill(x, y, fillColor, oldColor)
if (x <0)] (x >= width))

if ((y <0) [| (y >= height))
return

if (getPixel (x, y) == oldColor)

return

setPixel (fillColor, X, y)

107

© Copyright Virtual University of Pakistan

Computer Graphics (CS602)

floodFill (x+1, vy, fillColor, oldColor)
floodFill (x, y+1, fillColor, oldColor)
floodFill (x-1, y, fillColor, oldColor)
floodFill (x, y-1, fillColor, oldColor)

It's a little awkward to kick off a flood fill algorithm because it requires that the old
color must be read before it is invoked. The following implementation overcomes
this limitation, and it is also somewhat faster, a little bit longer. The additional
speed comes from only pushing three directions onto the stack each time instead

of four.

fillFast (X, y, fillColor)
if (x <0) || (x >=width)) return
if ((y <0) || (y >=height)) return
int oldColor = getPixel (x, y)
if (oldColor == fill) return
setPixel (fillColor, X, y)
fillEast (x+1, y, fillColor, oldColor)
fillSouth (x, y+1, fillColor, oldColor)
fillWest (x-1, y, fillColor, oldColor)
fillNorth (x, y-1, fillColor, oldColor)

fillEast (x, v, fillColor, oldColor)
if (x >= width) return
if (getPixel(x, y) == oldColor)
setPixel(fillColor, x, y)
fillEast (x+1, v, fillColor, oldColor)
fillSouth (x, y+1, fillColor, oldColor)
fillNorth (x, y-1, fillColor, oldColor)

fillSouth(x, vy, fillColor, oldColor)
if (y >=height) return
if (getPixel (x, y) == oldColor)
setPixel (fillColor, x, y)
fillEast (x+1, v, fillColor, oldColor)
fillSouth (x, y+1, fillColor, oldColor)
fillWest (x-1, y, fillColor, oldColor)

fillWest(x, v, fillColor, oldColor)
{
if (x <0) return
if (getPixel (x, y) == oldColor)
setPixel (fillColor, X, y)

108

© Copyright Virtual University of Pakistan

Computer Graphics (CS602)

fillSouth (x, y+1, fillColor, oldColor)
fillWest (x-1, y, fillColor, oldColor)
fillNorth (x, y-1, fillColor, oldColor)

fillNorth (x, y, fill, old)
if (y <0) return
if (getPixel (x, y) == oldColor)
setPixel (fill, x, y)
fillEast (x+1, vy, fillColor, oldColor)
fillWest (x-1, y, fillColor, oldColor)
fillNorth (x, y-1, fillColor, oldColor)

A final consideration when writing an area-fill algorithm is the size and
connectivity of the neighborhood around a given pixel.

: Four-connected
3 neighborhood
¢!~ Eight-connected
s nairnhharhaond

I-vlﬂ HE B B BRSNS

The eight-connected neighborhood is able to get into nooks and crannies that an
algorithm based on a four-connected neighborhood cannot.

Here's the code for an eight-connected flood fill.

floodFill8 (x, v, fill, old)

if (x <0)]| (x >=width)) return

if ((y <0) || (y >=height)) return

if (getPixel (x, y) == oldColor)
setPixel (fill, x, y);
floodFill8 (x+1, y, fillColor, oldColor)
floodFill8 (x, y+1, fillColor, oldColor)
floodFill8 (x-1, v, fillColor, oldColor)
floodFill8 (x, y-1, fillColor, oldColor)
floodFill8 (x+1, y+1, fillColor, oldColor)
floodFill8 (x-1, y+1, fillColor, oldColor)
floodFill8 (x-1, y-1, fillColor, oldColor)
floodFill8 (x+1, y-1, fillColor, oldColor)

109

© Copyright Virtual University of Pakistan

