
 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

105

I n t r o d u c t i o n t o C o m p u t e r G r a p h i c s

(L e c t u r e N o 0 9)

Filled-Area Primitives-II
9.1 Boundary fill

Another important class of area-filling algorithms starts at a point known to be
inside a figure and starts filling in the figure outward from the point. Using these
algorithms a graphic artist may sketch the outline of a figure and then select a
color or pattern with which to fill it. The actual filling process begins when a point
inside the figure is selected. These routines are like the paint-scan function seen
in common interactive paint packages.

The first such method that we will discuss is called the boundary-fill algorithm.
The boundary-fill method requires the coordinates of a starting point, a fill color,
and a boundary color as arguments.

Boundary fill algorithm:

The Boundary fill algorithm performs the following steps:

 Check the pixel for boundary color
 Check the pixel for fill color
 Set the pixel in fill color
 Run the process for neighbors

The pseudo code for Boundary fill algorithm can be written as:

 boundaryFill (x, y, fillColor , boundaryColor)
 if ((x < 0) || (x >= width))
 return
 if ((y < 0) || (y >= height))
 return
 current = GetPixel(x, y)

 if ((current != boundaryColor) && (current != fillColor))
 setPixel(fillColor, x, y)

 boundaryFill (x+1, y, fillColor, boundaryColor)
 boundaryFill (x, y+1, fillColor, boundaryColor)
 boundaryFill (x-1, y, fillColor, boundaryColor)
 boundaryFill (x, y-1, fillColor, boundaryColor)

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

106

Note that this is a recursive routine. Each invocation of boundaryFill () may call
itself four more times.

The logic of this routine is very simple. If we are not either on a boundary or
already filled we first fill our point, and then tell our neighbors to fill themselves.

Process of Boundary Fill Algorithm

By the way, sometimes the boundary fill algorithm doesn't work. Can you think of
such a case?

9.2 Flood Fill

Sometimes we need an area fill algorithm that replaces all connected pixels of a
selected color with a fill color.

The flood-fill algorithm does exactly that.

Flood-fill algorithm

An area fill algorithm that replaces all connected pixels of a selected color with a
fill color.

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

107

Before Applying Flood-fill algorithm (Light color)

After Applying Flood-fill algorithm (Dark color)

Flood-fill algorithm in action

The pseudo code for Flood fill algorithm can be written as:

 public void floodFill(x, y, fillColor, oldColor)

 if ((x < 0) || (x >= width))
 return
 if ((y < 0) || (y >= height))
 return
 if (getPixel (x, y) == oldColor)

 setPixel (fillColor, x, y)

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

108

 floodFill (x+1, y, fillColor, oldColor)
 floodFill (x, y+1, fillColor, oldColor)
 floodFill (x-1, y, fillColor, oldColor)
 floodFill (x, y-1, fillColor, oldColor)

It's a little awkward to kick off a flood fill algorithm because it requires that the old
color must be read before it is invoked. The following implementation overcomes
this limitation, and it is also somewhat faster, a little bit longer. The additional
speed comes from only pushing three directions onto the stack each time instead
of four.

 fillFast (x, y, fillColor)
 if ((x < 0) || (x >=width)) return
 if ((y < 0) || (y >=height)) return
 int oldColor = getPixel (x, y)
 if (oldColor == fill) return
 setPixel (fillColor, x, y)
 fillEast (x+1, y, fillColor, oldColor)
 fillSouth (x, y+1, fillColor, oldColor)
 fillWest (x-1, y, fillColor, oldColor)
 fillNorth (x, y-1, fillColor, oldColor)

 fillEast (x, y, fillColor, oldColor)
 if (x >= width) return
 if (getPixel(x, y) == oldColor)
 setPixel(fillColor, x, y)
 fillEast (x+1, y, fillColor, oldColor)
 fillSouth (x, y+1, fillColor, oldColor)
 fillNorth (x, y-1, fillColor, oldColor)

 fillSouth(x, y, fillColor, oldColor)
 if (y >=height) return
 if (getPixel (x, y) == oldColor)
 setPixel (fillColor, x, y)
 fillEast (x+1, y, fillColor, oldColor)
 fillSouth (x, y+1, fillColor, oldColor)
 fillWest (x-1, y, fillColor, oldColor)

 fillWest(x, y, fillColor, oldColor)
 {
 if (x < 0) return
 if (getPixel (x, y) == oldColor)
 setPixel (fillColor, x, y)

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

109

 fillSouth (x, y+1, fillColor, oldColor)
 fillWest (x-1, y, fillColor, oldColor)
 fillNorth (x, y-1, fillColor, oldColor)

 fillNorth (x, y, fill, old)
 if (y < 0) return
 if (getPixel (x, y) == oldColor)
 setPixel (fill, x, y)
 fillEast (x+1, y, fillColor, oldColor)
 fillWest (x-1, y, fillColor, oldColor)
 fillNorth (x, y-1, fillColor, oldColor)

A final consideration when writing an area-fill algorithm is the size and
connectivity of the neighborhood around a given pixel.

The eight-connected neighborhood is able to get into nooks and crannies that an
algorithm based on a four-connected neighborhood cannot.

Here's the code for an eight-connected flood fill.

 floodFill8 (x, y, fill, old)
 if ((x < 0) || (x >=width)) return
 if ((y < 0) || (y >=height)) return
 if (getPixel (x, y) == oldColor)
 setPixel (fill, x, y);
 floodFill8 (x+1, y, fillColor, oldColor)
 floodFill8 (x, y+1, fillColor, oldColor)
 floodFill8 (x-1, y, fillColor, oldColor)
 floodFill8 (x, y-1, fillColor, oldColor)
 floodFill8 (x+1, y+1, fillColor, oldColor)
 floodFill8 (x-1, y+1, fillColor, oldColor)
 floodFill8 (x-1, y-1, fillColor, oldColor)
 floodFill8 (x+1, y-1, fillColor, oldColor)

