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Introduction to Computer Graphics 
( C S 6 0 2 )  

Lecture 05 
Line Drawing Techniques 

 
5.1 Line 
A line, or straight line, is, roughly speaking, an (infinitely) thin, (infinitely) long, straight 
geometrical object, i.e. a curve that is long and straight. Given two points, in Euclidean 
geometry, one can always find exactly one line that passes through the two points; this 
line provides the shortest connection between the points and is called a straight line. 
Three or more points that lie on the same line are called collinear. Two different lines 
can intersect in at most one point; whereas two different planes can intersect in at most 
one line. This intuitive concept of a line can be formalized in various ways. 
 
A line may have three forms with respect to slope i.e. it may have slope = 1 as shown in 
following figure (a), or may have slope < 1 as shown in figure (b) or it may have slope > 
1 as shown in figure (c). Now if a line has slope = 1 it is very easy to draw the line by 
simply starting form one point and go on incrementing the x and y coordinates till they 
reach the second point. So that is a simple case but if slope < 1 or is > 1 then there will 
be some problem. 
 

   
figure (a)   figure (b)   figure (c) 

 
There are three techniques to be discussed to draw a line involving different time 
complexities that will be discussed later. These techniques are: 
 

 Incremental line algorithm 
 DDA line algorithm 
 Bresenham line algorithm 

 
5.2 Incremental line algorithm 
This algorithm exploits simple line equation y = m x + b 
Where m = dy / dx 
and b = y – m x 
 
Now check if |m| < 1 then starting at the first point, simply increment x by 1 (unit 
increment) till it reaches ending point; whereas calculate y point by the equation for 
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each x and conversely if |m|>1 then increment y by 1 till it reaches ending point; 
whereas calculate x point corresponding to each y, by the equation. 
 
Now before moving ahead let us discuss why these two cases are tested. First if |m| is 
less than 1 then it means that for every subsequent pixel on the line there will be unit 
increment in x direction and there will be less than 1 increment in y direction and vice 
versa for slope greater than 1. Let us clarify this with the help of an example: 
 
Suppose a line has two points p1 (10, 10) and p2 (20, 18) 
Now difference between y coordinates that is dy = y2 – y1 = 18 – 10 = 8 
Whereas difference between x coordinates is dx = x2 – x1 = 20 – 10 = 10 
This means that there will be 10 pixels on the line in which for x-axis there will be 
distance of 1 between each pixel and for y-axis the distance will be 0.8. 
 
Consider the case of another line with points p1 (10, 10) and p2 (16, 20) 
Now difference between y coordinates that is dy = y2 – y1 = 20 – 10 = 10 
Whereas difference between x coordinates is dx = x2 – x1 = 16 – 10 = 6 
 
This means that there will be 10 pixels on the line in which for x-axis there will be 
distance of 0.6 between each pixel and for y-axis the distance will be 1. 
 
Now having discussed this concept at length let us learn the algorithm to draw a line 
using above technique, called incremental line algorithm: 
 
Incremental_Line (Point p1, Point p2) 
dx = p2.x – p1.x 
dy = p2.y – p1.y 
m = dy / dx 
x = p1.x 
y = p1.y 
b = y – m * x 
if |m| < 1 
 for counter = p1.x to p2.x 
  drawPixel (x, y) 
  x = x + 1 
  y = m * x + b 
else 
 for counter = p1.y to p2.y 
  drawPixel (x, y) 
  y = y + 1 
  x = ( y – b ) / m 
 
Discussion on algorithm: 
Well above algorithm is quite simple and easy but firstly it involves lot of mathematical 
calculations that is for calculating coordinate using equation each time secondly it works 
only in incremental direction. 
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We have another algorithm that works fine in all directions and involving less calculation 
mostly only addition; which will be discussed in next topic. 
 
5.3 Digital Differential Analyzer (DDA) Algorithm: 
DDA abbreviated for digital differential analyzer has very simple technique. Find 
difference dx and dy between x coordinates and y coordinates respectively ending 
points of a line. If |dx| is greater than |dy|, than |dx| will be step and otherwise |dy| will be 
step. 
 
if |dx|>|dy| then 

step = |dx| 
else  

step = |dy| 
  
 
Now very simple to say that step is the total number of pixel required for a line.  Next 
step is to divide dx and dy by step to get xIncrement and yIncrement that is the 
increment required in each step to find next pixel value. 
 
xIncrement = dx/step 
yIncrement = dy/step 
 
Next a loop is required that will run step times. In the loop drawPixel and add 
xIncrement  in x1 by and yIncrement  in y1. 
 
To sum-up all above in the algorithm, we will get, 
 
DDA_Line (Point p1, Point p2) 
dx = p2.x – p1. x 
dy = p2.y – p1. y 
x1=p1.x 
y1=p1.y 
if |dx|>|dy| then 

step = |dx| 
else  

step = |dy| 
xIncrement = dx/step 
yIncrement = dy/step 
for counter = 1 to step 

drawPixel (x1, y1) 
x1 = x1 + xIncrement 

 y1 = y1 + yIncrement 
 
Criticism on Algorithm: 
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There is serious criticism on the algorithm that is use of floating point calculation. They 
say that when we have to draw points that should have integers as coordinates then 
why to use floating point calculation, which requires more space as well as they have 
more computational cost. 
 
Therefore there is need to develop an algorithm which would be based on integer type 
calculations. Therefore, work is done and finally we will come up with an algorithm 
“Bresenham Line Drawing algorithm” which will be discussed next. 
 
5.4 Bresenham's Line Algorithm 
 
Bresenham's algorithm finds the closest integer coordinates to the actual line, using 
only integer math. Assuming that the slope is positive and less than 1, moving 1 step in 
the x direction, y either stays the same, or increases by 1. A decision function is 
required to resolve this choice. 
 
If the current point is (xi, yi), the next 
point can be either (xi+1,yi) or (xi+1,yi+1) 
. The actual position on the line is (xi+1, 
m(xi+1)+c) . Calculating the distance 
between the true point, and the two 
alternative pixel positions available 
gives:  
 

 
 
 
 
 
 
 

d1 = y - yi 
= m * (x+1)+b-yi  

d2 = yi + 1 - y 
= yi + 1 – m ( xi + 1 ) - b 

 
Let us magically define a decision function p, to determine which distance is closer to 
the true point. By taking the difference between the distances, the decision function will 
be positive if d1 is larger, and negative otherwise. A positive scaling factor is added to 
ensure that no division is necessary, and only integer math need be used. 
 

pi = dx (d1-d2) 
pi = dx (2m * (xi+1) + 2b – 2yi-1 ) 
pi = 2 dy (xi+1) –2 dx yi + dx (2b-1 ) ------------------ (i) 
pi = 2 dy xi – 2 dx yi + k    ------------------ (ii) 

where  k=2 dy + dx (2b-1) 
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Then we can calculate pi+1 in terms of pi without any xi , yi or k . 

 
pi+1 = 2 dy xi+1 – 2 dx yi+1 + k  
pi+1 = 2 dy (xi + 1) - 2 dx yi+1 + k  since xi+1= xi + 1 
pi+1 = 2 dy xi  + 2 dy- 2 dx yi+1 + k   ------------------ (iii) 
Now subtracting (ii) from (iii), we get 
pi+1 - pi = 2 dy - 2 dx (yi+1 - yi ) 
pi+1  = pi + 2 dy - 2 dx (yi+1 - yi ) 

If the next point is: (xi+1,yi) then 
 

d1<d2 => d1-d2<0  
=> pi<0  
=> pi+1= pi + 2 dy  
 

If the next point is: (xi+1,yi+1) then  
 

d1>d2 => d1-d2>0  
=> pi>0  
=> pi+1= pi + 2 dy - 2 dx  

 
The pi is our decision variable, and calculated using integer arithmetic from pre-
computed constants and its previous value.  Now a question is remaining how to 
calculate initial value of pi. For that use equation (i) and put values (x1, y1) 

 
pi = 2 dy (x1+1) – 2 dx yi + dx (2b-1 ) 
where b = y – m x implies that 
pi = 2 dy x1 +2 dy – 2 dx yi + dx ( 2 (y1 – mx1) -1  ) 
pi = 2 dy x1 +2 dy – 2 dx yi + 2 dx y1 – 2 dy x1  - dx 
pi = 2 dy x1 +2 dy – 2 dx yi + 2 dx y1 – 2 dy x1  - dx 

 
there are certain figures will cancel each other shown in same different colour 
 

pi = 2 dy  - dx 
 

Thus Bresenham's line drawing algorithm is as follows: 
 

dx =  x2-x1 
dy =  y2-y1  
p  =  2dy-dx 
c1 =  2dy  
c2 =  2(dy-dx) 
x  =  x1  
y  =  y1  
plot (x,y,colour) 
while (x <  x2 )  
 x++;  
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 if (p < 0)  
  p = p +  c1   
 else  
  p = p +  c2   

y++  
plot (x,y,colour)  
 

Again, this algorithm can be easily generalized to other arrangements of the end points of the 
line segment, and for different ranges of the slope of the line. 
 
5.5 Improving performance 
 
Several techniques can be used to improve the performance of line-drawing 
procedures. These are important because line drawing is one of the fundamental 
primitives used by most of the other rendering applications. An improvement in the 
speed of line-drawing will result in an overall improvement of most graphical 
applications.  
 
Removing procedure calls using macros or inline code can produce improvements. 
Unrolling loops also may produce longer pieces of code, but these may run faster. 
 
The use of separate x and y coordinates can be discarded in favour of direct frame 
buffer addressing. Most algorithms can be adapted to calculate only the initial frame 
buffer address corresponding to the starting point and to replaced: 

 
 
X++ with Addr++  
Y++ with Addr+=XResolution  

Fixed point representation allows a method for performing calculations using only 
integer arithmetic, but still obtaining the accuracy of floating point values. In fixed point, 
the fraction part of a value is stored separately, in another integer:  

M = Mint.Mfrac  
Mint = Int(M)  
Mfrac = Frac(M)× MaxInt  
 

Addition in fixed point representation occurs by adding fractional and integer 
components separately, and only transferring any carry-over from the fractional result to 
the integer result. The sequence could be implemented using the following two integer 
additions: ADD  Yfrac,Mfrac ; ADC  Yint,Mint  
 
Improved versions of these algorithms exist. For example the following variations exist 
on Bresenham's original algorithm: 
 
5.6 Symmetry (forward and backward simultaneously)  
Segmentation (divide into smaller identical segments - GCD(D x,D y) )  
Double step, triple step, n step. 
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5.7 Setting a Pixel 
 
Initial Task: Turning on a pixel (loading the frame buffer/bit-map). Assume the simplest 
case, i.e., an 8-bit, non-interlaced graphics system. Then each byte in the frame buffer 
corresponds to a pixel in the output display. 

 

To find the address of a particular pixel (X,Y) we use the following formula: 

addr(X, Y) = addr(0,0) + Y rows * (Xm + 1) + X (all in bytes) 

addr(X,Y) = the memory address of pixel (X,Y) 
addr(0,0) = the memory address of the initial pixel (0,0) 
Number of rows = number of raster lines. 
Number of columns = number of pixels/raster line. 
Example: 
For a system with 640 × 480 pixel resolution, find the address of pixel X = 340, Y = 150 
addr(340, 150) = addr(0,0) + 150 * 640 (bytes/row) + 340 
= base + 96,340 is the byte location 

Graphics system usually have a command such as set_pixel (x, y) where x, y are 
integers. 


