
 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

52

Introduction to Computer Graphics
(C S 6 0 2)

Lecture 05
Line Drawing Techniques

5.1 Line
A line, or straight line, is, roughly speaking, an (infinitely) thin, (infinitely) long, straight
geometrical object, i.e. a curve that is long and straight. Given two points, in Euclidean
geometry, one can always find exactly one line that passes through the two points; this
line provides the shortest connection between the points and is called a straight line.
Three or more points that lie on the same line are called collinear. Two different lines
can intersect in at most one point; whereas two different planes can intersect in at most
one line. This intuitive concept of a line can be formalized in various ways.

A line may have three forms with respect to slope i.e. it may have slope = 1 as shown in
following figure (a), or may have slope < 1 as shown in figure (b) or it may have slope >
1 as shown in figure (c). Now if a line has slope = 1 it is very easy to draw the line by
simply starting form one point and go on incrementing the x and y coordinates till they
reach the second point. So that is a simple case but if slope < 1 or is > 1 then there will
be some problem.

figure (a) figure (b) figure (c)

There are three techniques to be discussed to draw a line involving different time
complexities that will be discussed later. These techniques are:

 Incremental line algorithm
 DDA line algorithm
 Bresenham line algorithm

5.2 Incremental line algorithm
This algorithm exploits simple line equation y = m x + b
Where m = dy / dx
and b = y – m x

Now check if |m| < 1 then starting at the first point, simply increment x by 1 (unit
increment) till it reaches ending point; whereas calculate y point by the equation for

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

53

each x and conversely if |m|>1 then increment y by 1 till it reaches ending point;
whereas calculate x point corresponding to each y, by the equation.

Now before moving ahead let us discuss why these two cases are tested. First if |m| is
less than 1 then it means that for every subsequent pixel on the line there will be unit
increment in x direction and there will be less than 1 increment in y direction and vice
versa for slope greater than 1. Let us clarify this with the help of an example:

Suppose a line has two points p1 (10, 10) and p2 (20, 18)
Now difference between y coordinates that is dy = y2 – y1 = 18 – 10 = 8
Whereas difference between x coordinates is dx = x2 – x1 = 20 – 10 = 10
This means that there will be 10 pixels on the line in which for x-axis there will be
distance of 1 between each pixel and for y-axis the distance will be 0.8.

Consider the case of another line with points p1 (10, 10) and p2 (16, 20)
Now difference between y coordinates that is dy = y2 – y1 = 20 – 10 = 10
Whereas difference between x coordinates is dx = x2 – x1 = 16 – 10 = 6

This means that there will be 10 pixels on the line in which for x-axis there will be
distance of 0.6 between each pixel and for y-axis the distance will be 1.

Now having discussed this concept at length let us learn the algorithm to draw a line
using above technique, called incremental line algorithm:

Incremental_Line (Point p1, Point p2)
dx = p2.x – p1.x
dy = p2.y – p1.y
m = dy / dx
x = p1.x
y = p1.y
b = y – m * x
if |m| < 1
 for counter = p1.x to p2.x
 drawPixel (x, y)
 x = x + 1
 y = m * x + b
else
 for counter = p1.y to p2.y
 drawPixel (x, y)
 y = y + 1
 x = (y – b) / m

Discussion on algorithm:
Well above algorithm is quite simple and easy but firstly it involves lot of mathematical
calculations that is for calculating coordinate using equation each time secondly it works
only in incremental direction.

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

54

We have another algorithm that works fine in all directions and involving less calculation
mostly only addition; which will be discussed in next topic.

5.3 Digital Differential Analyzer (DDA) Algorithm:
DDA abbreviated for digital differential analyzer has very simple technique. Find
difference dx and dy between x coordinates and y coordinates respectively ending
points of a line. If |dx| is greater than |dy|, than |dx| will be step and otherwise |dy| will be
step.

if |dx|>|dy| then

step = |dx|
else

step = |dy|

Now very simple to say that step is the total number of pixel required for a line. Next
step is to divide dx and dy by step to get xIncrement and yIncrement that is the
increment required in each step to find next pixel value.

xIncrement = dx/step
yIncrement = dy/step

Next a loop is required that will run step times. In the loop drawPixel and add
xIncrement in x1 by and yIncrement in y1.

To sum-up all above in the algorithm, we will get,

DDA_Line (Point p1, Point p2)
dx = p2.x – p1. x
dy = p2.y – p1. y
x1=p1.x
y1=p1.y
if |dx|>|dy| then

step = |dx|
else

step = |dy|
xIncrement = dx/step
yIncrement = dy/step
for counter = 1 to step

drawPixel (x1, y1)
x1 = x1 + xIncrement

 y1 = y1 + yIncrement

Criticism on Algorithm:

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

55

There is serious criticism on the algorithm that is use of floating point calculation. They
say that when we have to draw points that should have integers as coordinates then
why to use floating point calculation, which requires more space as well as they have
more computational cost.

Therefore there is need to develop an algorithm which would be based on integer type
calculations. Therefore, work is done and finally we will come up with an algorithm
“Bresenham Line Drawing algorithm” which will be discussed next.

5.4 Bresenham's Line Algorithm

Bresenham's algorithm finds the closest integer coordinates to the actual line, using
only integer math. Assuming that the slope is positive and less than 1, moving 1 step in
the x direction, y either stays the same, or increases by 1. A decision function is
required to resolve this choice.

If the current point is (xi, yi), the next
point can be either (xi+1,yi) or (xi+1,yi+1)
. The actual position on the line is (xi+1,
m(xi+1)+c) . Calculating the distance
between the true point, and the two
alternative pixel positions available
gives:

d1 = y - yi
= m * (x+1)+b-yi

d2 = yi + 1 - y
= yi + 1 – m (xi + 1) - b

Let us magically define a decision function p, to determine which distance is closer to
the true point. By taking the difference between the distances, the decision function will
be positive if d1 is larger, and negative otherwise. A positive scaling factor is added to
ensure that no division is necessary, and only integer math need be used.

pi = dx (d1-d2)
pi = dx (2m * (xi+1) + 2b – 2yi-1)
pi = 2 dy (xi+1) –2 dx yi + dx (2b-1) ------------------ (i)
pi = 2 dy xi – 2 dx yi + k ------------------ (ii)

where k=2 dy + dx (2b-1)

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

56

Then we can calculate pi+1 in terms of pi without any xi , yi or k .

pi+1 = 2 dy xi+1 – 2 dx yi+1 + k
pi+1 = 2 dy (xi + 1) - 2 dx yi+1 + k since xi+1= xi + 1
pi+1 = 2 dy xi + 2 dy- 2 dx yi+1 + k ------------------ (iii)
Now subtracting (ii) from (iii), we get
pi+1 - pi = 2 dy - 2 dx (yi+1 - yi)
pi+1 = pi + 2 dy - 2 dx (yi+1 - yi)

If the next point is: (xi+1,yi) then

d1<d2 => d1-d2<0
=> pi<0
=> pi+1= pi + 2 dy

If the next point is: (xi+1,yi+1) then

d1>d2 => d1-d2>0
=> pi>0
=> pi+1= pi + 2 dy - 2 dx

The pi is our decision variable, and calculated using integer arithmetic from pre-
computed constants and its previous value. Now a question is remaining how to
calculate initial value of pi. For that use equation (i) and put values (x1, y1)

pi = 2 dy (x1+1) – 2 dx yi + dx (2b-1)
where b = y – m x implies that
pi = 2 dy x1 +2 dy – 2 dx yi + dx (2 (y1 – mx1) -1)
pi = 2 dy x1 +2 dy – 2 dx yi + 2 dx y1 – 2 dy x1 - dx
pi = 2 dy x1 +2 dy – 2 dx yi + 2 dx y1 – 2 dy x1 - dx

there are certain figures will cancel each other shown in same different colour

pi = 2 dy - dx

Thus Bresenham's line drawing algorithm is as follows:

dx = x2-x1
dy = y2-y1
p = 2dy-dx
c1 = 2dy
c2 = 2(dy-dx)
x = x1
y = y1
plot (x,y,colour)
while (x < x2)
 x++;

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

57

 if (p < 0)
 p = p + c1
 else
 p = p + c2

y++
plot (x,y,colour)

Again, this algorithm can be easily generalized to other arrangements of the end points of the
line segment, and for different ranges of the slope of the line.

5.5 Improving performance

Several techniques can be used to improve the performance of line-drawing
procedures. These are important because line drawing is one of the fundamental
primitives used by most of the other rendering applications. An improvement in the
speed of line-drawing will result in an overall improvement of most graphical
applications.

Removing procedure calls using macros or inline code can produce improvements.
Unrolling loops also may produce longer pieces of code, but these may run faster.

The use of separate x and y coordinates can be discarded in favour of direct frame
buffer addressing. Most algorithms can be adapted to calculate only the initial frame
buffer address corresponding to the starting point and to replaced:

X++ with Addr++
Y++ with Addr+=XResolution

Fixed point representation allows a method for performing calculations using only
integer arithmetic, but still obtaining the accuracy of floating point values. In fixed point,
the fraction part of a value is stored separately, in another integer:

M = Mint.Mfrac
Mint = Int(M)
Mfrac = Frac(M)× MaxInt

Addition in fixed point representation occurs by adding fractional and integer
components separately, and only transferring any carry-over from the fractional result to
the integer result. The sequence could be implemented using the following two integer
additions: ADD Yfrac,Mfrac ; ADC Yint,Mint

Improved versions of these algorithms exist. For example the following variations exist
on Bresenham's original algorithm:

5.6 Symmetry (forward and backward simultaneously)
Segmentation (divide into smaller identical segments - GCD(D x,D y))
Double step, triple step, n step.

 Computer Graphics (CS602)

© Copyright Virtual University of Pakistan

58

5.7 Setting a Pixel

Initial Task: Turning on a pixel (loading the frame buffer/bit-map). Assume the simplest
case, i.e., an 8-bit, non-interlaced graphics system. Then each byte in the frame buffer
corresponds to a pixel in the output display.

To find the address of a particular pixel (X,Y) we use the following formula:

addr(X, Y) = addr(0,0) + Y rows * (Xm + 1) + X (all in bytes)

addr(X,Y) = the memory address of pixel (X,Y)
addr(0,0) = the memory address of the initial pixel (0,0)
Number of rows = number of raster lines.
Number of columns = number of pixels/raster line.
Example:
For a system with 640 × 480 pixel resolution, find the address of pixel X = 340, Y = 150
addr(340, 150) = addr(0,0) + 150 * 640 (bytes/row) + 340
= base + 96,340 is the byte location

Graphics system usually have a command such as set_pixel (x, y) where x, y are
integers.

